![]() | Cím: Speciális de la Vallée Poussin-féle Vilenkin-Fourier közepek majdnem mindenütti konvergenciája Szerző: Blahota István - Nagy Dóra Kiadó neve: Nyíregyházi Egyetem, Matematika és Informatika Intézet DOI: https://doi.org/10.71066/VARECZA.2025.1.01 Megjelenés: 2025. december Letöltés / Megtekintés (PDF): letöltés |
Összefoglaló:
Korlátos Vilenkin–Fourier-rendszereken vizsgálunk egy de la Vallée Poussin-típusú mátrix-transzformációs
összegzési eljárást. Megadjuk azokat a monotonitási és egyéb feltételeket a súlyokra, amelyek biztosítják,
hogy az így kapott közepek majdnem mindenütt tartsanak az eredeti függvényhez minden integrálható függvény
esetén.
Kulcsszavak:
Fourier-sor, Vilenkin-rendszer, majdnem mindenütti konvergencia, mátrix-transzformációs közép.
Abstract:
We investigate a de la Vallée Poussin-type matrix transformation summation procedure on bounded Vilenkin-
Fourier systems. We give the monotonicity and other conditions on the weights that ensure that the resulting
means converge to the original function almost everywhere, for every integrable function.
Felhasznált szakirodalom:
[1] G.H. Agaev, N.Ya. Vilenkin, G.M. Dzhafarli and A.I. Rubinstein, Multiplicative systems of functions and harmonic
analysis on 0-dimensional groups, (in Russian), Izd. (”ELM”), Baku, 1981.
[2] M. Avdispahić and M. Pepić, Summability and integrability of Vilenkin series, Collect. Math. 51 (3) (2000), 237–254.
[3] D. Baramidze, Z. Dvalashvili and G. Tutberidze, Convergence of Nörlund means with respect to Vilenkin systems of
integrable functions, Mem. Differential Equations Math. Phys. 86 (2022), 1–14.
[4] I. Blahota, Approximation by de la Vallée Poussin type matrix transform mean of Vilenkin-Fourier series, Ann. Math.
Inform. (2025), DOI: 10.33039/ami.2025.06.002. https://doi.org/10.33039/ami.2025.06.002
[5] I. Blahota and G. Gát, On the rate of approximation by generalized de la Vallée Poussin type matrix
transform means of Walsh-Fourier series, p-Adic Numbers, Ultrametric Anal. Appl. 14 (1) (2022), S59–S73.
https://doi.org/10.1134/S2070046622050053
[6] I. Blahota and D. Nagy, Approximation by a special de la Vallée Poussin type matrix transform mean of Vilenkin–
Fourier series, Anal. Math. 50 (3) (2024) 939–957. https://doi.org/10.1007/s10476-024-00049-2
[7] I. Blahota and K. Nagy, Approximation by Θ-means of Walsh-Fourier series, Anal. Math. 44 (1) (2018), 57–71.
https://doi.org/10.1007/s10476-018-0106-3
[8] I. Blahota and K. Nagy, Approximation by matrix transform of Vilenkin-Fourier series. Publ. Math. Debrecen 99 (1-2)
(2021), 223–242. https://doi.org/10.5486/PMD.2021.9001
[9] I. Blahota and K. Nagy, Approximation by Marcinkiewicz-type matrix transform of Vilenkin-Fourier series, Mediterr.
J. Math. 19 (165) (2022). https://doi.org/10.1007/s00009-022-02105-3
[10] I. Blahota, K. Nagy and M. Salim, Approximation by Θ-means of Walsh-Fourier series in dyadic Hardy spaces and
dyadic homogeneous Banach spaces, Anal. Math. 47, (2021) 285–309. https://doi.org/10.1007/s10476-021-0083-9
[11] I. Blahota, K. Nagy and G. Tephnadze, Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series,
Math. Inequal. Appl. 22 (3) (2019), 837–853. https://doi.org/10.7153/mia-2019-22-58
[12] S.L. Blyumin, Linear summability methods for Fourier series in multiplicative systems, Sibirsk. Mat. Zh. 9 (2) (1968),
449–455.
[13] P. Chandra, On the degree of approximation of a class of functions by means of Fourier series, Acta Math. Hungar.
52 (1988), 199–205. https://doi.org/10.1007/BF01951564
[14] T. Eisner, The Θ-summation on local fields, Ann. Univ. Sci. Budapest. Sect. Comput. 33 (2011), 137–160.
[15] U. Goginava, On the approximation properties of Cesáro means of negative order of Walsh-Fourier series, J. Approx.
Theory 115 (1) (2002), 9–20. https://doi.org/10.1006/jath.2001.3632
[16] U. Goginava and K. Nagy, Matrix summability of Walsh-Fourier series, Mathematics 10 (14), 2458 (2022).
https://doi.org/10.3390/math10142458
[17] T.V. Iofina and S.S. Volosivets, On the degree of approximation by means of Fourier-Vilenkin series in Hölder and
Lp norm, East J. Approx. 15 (2), (2009) 143–158.
[18] L. Leindler, On the degree of approximation of continuous functions, Acta Math. Hungar. 104, (2004), 105–113.
https://doi.org/10.1023/B:AMHU.0000034365.58203.c7
[19] F. Móricz and B.E. Rhoades, Approximation by weighted means of Walsh-Fourier series, Int. J. Math. Sci. 19 (1)
(1996), 1–8. https://doi.org/10.1155/S0161171296000014
[20] F. Móricz and A. Siddiqi, Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory. 70 (1992),
375–389. https://doi.org/10.1016/0021-9045(92)90067-X
[21] G.I. Natanson and V.V. Zuk, Trigonometric Fourier Series and Approximation Theory, Izdat. Leningrad Univ., Leningrad,
1983 (in Russian).
[22] F. Schipp, W.R. Wade, P. Simon and J. Pál, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam
Hilger, Bristol-New York, 1990.
[23] G. Shavardenidze and M. Totladze, On the convergence of Cesáro means of negative order of Walsh-Fourier series.
Acta Math. Acad. Paedag. Nyíregyh. 34 (2023), 1–8.
[24] N.Ya. Vilenkin, On a class of complete orthonormal systems, (in Russian) Izv. Ross. Akad. Nauk Ser. Mat. 11 (1957),
363–400.
[25] S.S. Volosivets, Approximation by Vallée-Poussin type means of Vilenkin-Fourier series, p-Adic Numbers Ultrametric
Anal. Appl. 16 (3) (2024), 295–301. https://doi.org/10.1134/S2070046624030075
[26] F. Weisz, Θ-summability of Fourier series, Acta Math. Hungar. 103 (1-2) (2004), 139–175.
https://doi.org/10.1023/B:AMHU.0000028241.87331.c5
